Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling.

نویسندگان

  • Anatoliy I Masyuk
  • Bing Q Huang
  • Brynn N Radtke
  • Gabriella B Gajdos
  • Patrick L Splinter
  • Tatyana V Masyuk
  • Sergio A Gradilone
  • Nicholas F LaRusso
چکیده

TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bile acid signaling and biliary functions

This review focuses on various components of bile acid signaling in relation to cholangiocytes. Their roles as targets for potential therapies for cholangiopathies are also explored. While many factors are involved in these complex signaling pathways, this review emphasizes the roles of transmembrane G protein coupled receptor (TGR5), farnesoid X receptor (FXR), ursodeoxycholic acid (UDCA) and ...

متن کامل

Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia.

Exosomes are small extracellular vesicles that are thought to participate in intercellular communication. Recent work from our laboratory suggests that, in normal and cystic liver, exosome-like vesicles accumulate in the lumen of intrahepatic bile ducts, presumably interacting with cholangiocyte cilia. However, direct evidence for exosome-ciliary interaction is limited and the physiological rel...

متن کامل

TGR5: A Novel Target for Weight Maintenance and Glucose Metabolism

TGR5, an emerging G protein-coupled receptor, was identified as a membrane receptor for bile acids. The expression of TGR5 and its function are distinct from the previously identified nuclear bile acid receptor, farnesoid X receptor (FXR). These two bile acid receptors complement with each other for maintaining bile acid homeostasis and mediating bile acid signaling. Both receptors are also sho...

متن کامل

Role of the bile acid receptor TGR5 (Gpbar-1) in liver damage and regeneration

Bile acids (BA) are signaling molecules with pleiotropic paracrine and endocrine functions (for recent reviews see [1-4] and references herein). Bile acids are involved in the regulation of bile acid, glucose, lipid and energy homeostasis and can modulate the immune response both in the liver and in the intestine [1,2]. Furthermore, bile acids can promote cell proliferation, cell differentiatio...

متن کامل

Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion.

Cholangiocytes, epithelial cells lining the biliary tree, have primary cilia extending from their apical membrane into the ductal lumen. Although important in disease, cilia also play a vital role in normal cellular functions. We reported that cholangiocyte cilia are sensory organelles responding to mechanical stimuli (i.e., luminal fluid flow) by alterations in intracellular Ca(2+) and cAMP. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 304 11  شماره 

صفحات  -

تاریخ انتشار 2013